
Analysis of Data Reuse in Task Parallel Runtimes

Miquel Pericàs?, Abdelhalim Amer?,
Kenjiro Taura† and Satoshi Matsuoka?

?Tokyo Institute of Technology
†The University of Tokyo

PMBS’13, Denver, November 18th 2013 1

Table of Contents

1 Task Parallel Runtimes

2 Case Study of Matmul and FMM

3 Kernel Reuse Distance

4 Experimental Evaluation

5 Current Weaknesses

6 Conclusions

PMBS’13, Denver, November 18th 2013 2

Table of Contents

1 Task Parallel Runtimes

2 Case Study of Matmul and FMM

3 Kernel Reuse Distance

4 Experimental Evaluation

5 Current Weaknesses

6 Conclusions

PMBS’13, Denver, November 18th 2013 3

Task Parallel Programming Models

• Task-parallel programming models are popular tools for
multicore programming

• They are general, simple and can be implemented efficiently

Runtime Layer
(Cilk, TBB, OpenMP, ..)

C C C C

Tasks
DAG

Cores

• Task-parallel runtimes manage assignation of tasks to cores,
allowing programmers to write cleaner code

PMBS’13, Denver, November 18th 2013 4

Performance of Runtime Systems

• Runtime schedulers implement heuristics to maximize
parallelism and optimize resource sharing

• Performance can depend considerably on such heuristics,
degradation often occurs without any obvious reason

 0

 4

 8

 12

 16

 20

 24

 1 2 4 6 12 18 24

S
p

e
ed

-U
p

Number of Cores

Runtime A
Runtime B
Runtime C
Runtime D

Linear

?

PMBS’13, Denver, November 18th 2013 5

Scalability of task parallel applications

Why do task parallel codes not scale linearly?

• Runtime Overheads: execution cycles inside API calls

• Parallel Idleness: lost cycles due to load imbalance and lack
of parallelism

• Resource Sharing: additional cycles due to contention or
destructive sharing → work time inflation (WTI)

PMBS’13, Denver, November 18th 2013 6

Quantifying Parallelization Stretch

• OVRN = Non-work Overheads at N cores (API + IDLE time)

• WTIN = Work Time Inflation at N cores

Serial` W1
s

W2
s

W3
s

W4
s

W5
s

W6
s

P
ar

al
le

l

Core 1

Core 2

Core 1

Core 3

Core 4

W1
p API IDLE W5

p

W3
pIDLE

WTI
4

OVR
4

W2
p API W6

p

W4
pIDLE

1 2

1 23 4 1 25 6

Parallel Stretch

Tpar = Tser
N ×WTIN × OVRN → Speed-UpN = N

OVRN×WTIN

PMBS’13, Denver, November 18th 2013 7

Table of Contents

1 Task Parallel Runtimes

2 Case Study of Matmul and FMM

3 Kernel Reuse Distance

4 Experimental Evaluation

5 Current Weaknesses

6 Conclusions

PMBS’13, Denver, November 18th 2013 8

Case Study: Matmul and FMM

Matrix Multiplication (C = A x B)

• Input Size: 4096×4096 elements

• Task Inputs/Outputs: 2D submatrices

• Average task size1: 17 µs

Fast Multipole Method: Tree Traversal2

• Input Size: 1 million particles (Plummer)

• Task Inputs/Outputs: octree cells (multipoles and vectors of
bodies)

• Average task size: 3.25 µs

1measured on Intel Xeon E7-4807 at 1.86GHz
2https://bitbucket.org/rioyokota/exafmm-dev

https://bitbucket.org/rioyokota/exafmm-dev

Case Study: three runtimes

• MassiveThreads: Cilk-like runtime with random work stealer
and work-first policy.

• Threading Building Blocks: C++ template based runtime
with random work stealer and help-first policy.

• Qthread: Locality-aware runtime with shared task queue. A
set of workers are grouped in a shepherd. Bulk work stealing
across shepherds (50% of victim’s tasks). Help-first policy.

C C C CLIFO
local task
scheduling

FIFO
Work
stealing

Task Queues

MassiveThreads
Work First

C C C CLIFO
local task
scheduling

FIFO
Work
stealing

Task Queues

Help First

Thread Building Blocks

C C C C C C C CC C C C

LIFO
global task
scheduling

NUMA
node #2

(shepherd)

bulk FIFO
work stealing

“shepherd”

Qthread

PMBS’13, Denver, November 18th 2013 10

Experimental Setup

• Experimental platform is a 4-socket Intel Xeon E7- 4807
(Westmere) machine with 6 cores per die (1.87GHz) and
18MB of LLC.

• We specify the same subset of cores for every experiment

• The following runtime configurations are used:

Runtime Task Creation Work Stealing Task Queue

MTH Work-First Random / 1 task Core/LIFO

TBB Help-First Random / 1 task Core/LIFO

QTH/Core Help-First Random / Bulk Core/LIFO

QTH/Socket Help-First Random / Bulk Socket/LIFO

PMBS’13, Denver, November 18th 2013 11

Speed-Ups for Matmul and FMM

Matmul FMM

 0

 4

 8

 12

 16

 20

 24

 1 2 4 6 12 18 24

S
pe

ed
-U

p

Number of Cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

Linear

 0

 4

 8

 12

 16

 20

 24

 1 2 4 6 12 18 24

S
pe

ed
-U

p

Number of Cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

Linear

Performance Variation at 24 Cores:

• Matmul: 16×–21× (MTH best, QTH/Socket worst)

• FMM: 9×–18× (MTH best, TBB worst)

PMBS’13, Denver, November 18th 2013 12

Overheads (OVRN) for Matmul and FMM

Matmul FMM

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 4 6 12 18 24

N
on

-W
or

k
O

ve
rh

ea
ds

Number of cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 4 6 12 18 24

N
on

-W
or

k
O

ve
rh

ea
ds

Number of cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

Overheads are obtained by measuring the time cores spend outside
of work kernels. At 24 cores:

• Matmul: 1.1×–1.4× (MTH best; QTH/Socket worst)

• FMM: 1.3×–2.2× (MTH best; TBB and QTH/Socket worst)

PMBS’13, Denver, November 18th 2013 13

Do overheads alone explain performance?

Normalized speed-up overhead product

Speed-UpN = N
OVRN×WTIN

→ Speed-UpN×OVRN

N = 1
WTIN

• The normalized speed-up overhead product is a measure of
performance loss due to resource sharing

• A value of 1.0 means no work time inflation is occurring

PMBS’13, Denver, November 18th 2013 14

Normalized speed-up overhead product

Matmul FMM

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 2 4 6 12 18 24

N
or

m
al

iz
ed

 S
pe

ed
-U

p
x

O
ve

rh
ea

d
P

ro
du

ct

Number of Cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 2 4 6 12 18 24

N
or

m
al

iz
ed

 S
pe

ed
-U

p
x

O
ve

rh
ea

d
P

ro
du

ct

Number of cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

Speed-up degradation due to resource contention

• Matmul: 2%–10% (MTH best; TBB worst)

• FMM: 2%–18% (MTH best; TBB worst)

• Reason? cache effects due to different orders of tasks
PMBS’13, Denver, November 18th 2013 15

Performance bottlenecks analysis

• Overheads can be studied with a variety of tools

• Sampling-based: perf1, HPCToolkit2, extrae3, etc
• Tracing-based: vampirtrace4, TAU5, extrae, etc
• Runtime library support

• How can we analyze the impact of different runtime
schedulers on data locality?

→ Proposal: use the reuse distance to evaluate cache performance

1https://perf.wiki.kernel.org
2http://hpctoolkit.org/
3http://www.bsc.es/computer-sciences/performance-tools/paraver
4http://www.vampir.eu
5http://tau.uoregon.edu

https://perf.wiki.kernel.org
http://hpctoolkit.org/
http://www.bsc.es/computer-sciences/performance-tools/paraver
http://www.vampir.eu
http://tau.uoregon.edu

Table of Contents

1 Task Parallel Runtimes

2 Case Study of Matmul and FMM

3 Kernel Reuse Distance

4 Experimental Evaluation

5 Current Weaknesses

6 Conclusions

PMBS’13, Denver, November 18th 2013 17

Multicore-aware Reuse Distance

L1

L2

CORE
#1 a

b
c
d
e
a
f
g
f

4

1

@

1 4
0

100

%

dist
∞

L1

L2

CORE
#1

a
b
c
d
e
a
f
g
f

4

1

@

L1

L2

CORE
#2

e
f
g
e
h
i
j
k
i

2

2

@

L3

a
e
f
b
c
g
e
d
e
a
h
i
f
j
k
g
f
i

1 4
0

100

%

dist
∞

Single­threaded Reuse Distance Multi­threaded Reuse Distance

• Generation of full address traces is too intrusive

→ changes task schedules

• Computing the reuse distance is expensive
PMBS’13, Denver, November 18th 2013 18

Lightweight data tracing

We make several assumptions to reduce the cost of the metric

• Cache performance is dominated by global (shared) data

→ short lived stack variables are not tracked. Only the
kernel inputs/outputs are recorded.

• Performance is dominated by last level cache misses

→ we interleave the address streams of all threads and
compute the reuse distance histogram

• For large reuse distances individual LD/ST tracking is not
needed

→ we record kernel inputs at bulk (timestamp,

address, size)

PMBS’13, Denver, November 18th 2013 19

Kernel Reuse Distance (KRD)

Kernel Access Trace
CORE #1

L1

L2

LLC

L1

L2

4
5

7
9

1
2

3
6

8
10

11
12

4
5

7
9

1
2

3
6

8
10

11
12

4 5 7 91 2 3 6 8 10 11 12

first
time accesses

Kernel Access Trace
CORE #2

CORE
#1

CORE
#2

MAIN MEMORY

1) Kernel Data Trace Generation

2) Merging/Synchronization

3) Histogram
Generation

PMBS’13, Denver, November 18th 2013 20

Kernel Reuse Distance: Application

Kernel Reuse Distance (KRD)

KRD provides an intuitive measure of data reuse quality. We want
to make quick assessments on reuse, comparing the performance of
different schedulers

PMBS’13, Denver, November 18th 2013 21

Table of Contents

1 Task Parallel Runtimes

2 Case Study of Matmul and FMM

3 Kernel Reuse Distance

4 Experimental Evaluation
KRD histograms and runtime schedulers
KRD histograms and performance

5 Current Weaknesses

6 Conclusions

PMBS’13, Denver, November 18th 2013 22

Instrumentation

• We record submatrices for matmul, and multipoles and body
arrays for FMM

• Total overhead below 5% for FMM and below 1% for Matmul

• As memory traces record data regions, histogram generation is
much faster

PMBS’13, Denver, November 18th 2013 23

KRD histograms and runtime schedulers

• We first analyze the correlation of different schedulers and the
KRD metric:

• Four schedulers

• MassiveThreads, TBB, Qthread/Core and
Qthread/Socket

• Three system configurations:

• 1 core
• 1 socket (6 cores)
• 4 sockets (24 cores)

PMBS’13, Denver, November 18th 2013 24

Single Core Kernel Reuse Distance (KRD-1)

Matmul FMM

 0

 20

 40

 60

 80

 100

32KB
64KB

128KB

256KB

512KB

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

256

1KB
4KB

16KB
64KB

256KB

1MB
4MB

16MB
64MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

Almost no variations between histograms:

• In the abscence of work steals order is only determined by
Work-First or Help-First

• Matmul kernel order is independent of spawn policy. FMM is
sensitive, but differences are still minimal

PMBS’13, Denver, November 18th 2013 25

Single Socket / 6 Core Kernel Reuse Distance (KRD-6)

Matmul FMM

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

32KB
64KB

128KB

256KB

512KB

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

256

1KB
4KB

16KB
64KB

256KB

1MB
4MB

16MB
64MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

• QTH/Socket shared queue improves temporal locality

• Other schedulers almost no difference. TBB slightly better

• Differences in FMM are much smaller

PMBS’13, Denver, November 18th 2013 26

Four Sockets / 24 Core Kernel Reuse Distance (KRD-24)

Matmul FMM

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

32KB
64KB

128KB

256KB

512KB

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

256

1KB
4KB

16KB
64KB

256KB

1MB
4MB

16MB
64MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

• Differences in distant reuses grow

• QTH/Socket shared queue also improves temporal locality
with multiple sockets

• TBB suffers in the context of multiple sockets

PMBS’13, Denver, November 18th 2013 27

Impact of Multiple Sockets on Cold Accesses

Matmul FMM

1 socket

80

85

90

95

100

4M
B

8M
B

16M
B

32M
B

64M
B

128M
B

256M
B

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

99.1%

88

90

92

94

96

98

100

1M
B

4M
B

16M
B

64M
B

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

97.5%

4 sockets

80

85

90

95

100

4M
B

8M
B

16M
B

32M
B

64M
B

128M
B

256M
B

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

96.2%

97.4%

88

90

92

94

96

98

100

1M
B

4M
B

16M
B

64M
B

INF

R
e

u
se

 R
a

tio
 (

%
)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

95.6%

93.5%

PMBS’13, Denver, November 18th 2013 28

KRD histograms and performance

• Want to understand how the KRD metric correlates with
hardware performance metrics

• We choose a multisocket low overheads scenario: Matmul on
2 sockets / 12 cores

• Low Overhead: MTH, TBB, QTH/Core overheads
around 1.1-1.2×
• Moderate Overhead: QTH/Socket overhead 1.35×

PMBS’13, Denver, November 18th 2013 29

Hardware Metrics and KRD for Matmul on 2 sockets

Runtime Exec. Time OVR12 LLC Misses Kernel Time & Inflation

MTH 1.642 sec 1.094× 1.829×106 17441ns (1.0250×)

TBB 1.742 sec 1.11× 2.807×106 17898ns (1.0519×)

QTH/Core 1.859 sec 1.21× 2.339×106 17767ns (1.0441×)

QTH/Socket 2.111 sec 1.34× 1.987×106 18401ns (1.0814×)

 93

 94

 95

 96

 97

 98

16MB
32MB

64MB
128MB

256MB

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

• LLC misses correlate to data
reuse histograms

• QTH/Socket LLC miss rate
and WTI too large.

• Runtime activity is causing
additional misses and
contention on memory
subsystem

PMBS’13, Denver, November 18th 2013 30

Table of Contents

1 Task Parallel Runtimes

2 Case Study of Matmul and FMM

3 Kernel Reuse Distance

4 Experimental Evaluation

5 Current Weaknesses

6 Conclusions

PMBS’13, Denver, November 18th 2013 31

Discussion

Tracks only global data accesses in bulk

• The user needs to ensure that stack accesses are negligible

• For matmul we found that stack accesses are less than 1%

No modeling of the effects of cache coherence

• Affects multisocket scenario, our results are optimstic

No measurement of spatial locality

• A spatial locality metric could be added to model prefetchers.

PMBS’13, Denver, November 18th 2013 32

Table of Contents

1 Task Parallel Runtimes

2 Case Study of Matmul and FMM

3 Kernel Reuse Distance

4 Experimental Evaluation

5 Current Weaknesses

6 Conclusions

PMBS’13, Denver, November 18th 2013 33

Summary of findings

• We developed a tool based on the reuse distance to study
reuse in task parallel applications. The tools is designed to be
lightweight and can provide fast comparison of different
implementations.

• Although the tool was developed to compare task parallel
runtimes, it can be applied to any shared memory model.

• Our experiments indicate that the reuse distance histograms
correlate with scheduler policies and with hardware metrics

PMBS’13, Denver, November 18th 2013 34

Thank you!

Questions?

PMBS’13, Denver, November 18th 2013 35

	Task Parallel Runtimes
	Case Study of Matmul and FMM
	Kernel Reuse Distance
	Experimental Evaluation
	KRD histograms and runtime schedulers
	KRD histograms and performance

	Current Weaknesses
	Conclusions

